

Deutsche Sporthochschule Köln

German Sport University Cologne

German Air Force

Centre of Aerospace Medicine

Aviation Physiology Training Centre

Influence of Changing Gravity and Exerted Exhalation Linkage between Oxygen Uptake and Cardiac Output

Hoffmann U¹, Koschate J¹, Thieschäfer L¹, Drescher U¹, Drews T², Werner A²

Introduction: Changing gravity in G_z-axis influences cardiovascular factors P such as stroke volume (SV), heart rate (HR), blood pressure (BP), peripheral resistance and perfusion as well as pulmonary components: lung perfusion, alveolar aeration and arterio-venous oxygen difference in the tissue. Parabolic Flight (PF) runs compared to Human Centrifuge (HC) and Tilt Table (TT) maneuvers induce similar changes in pulmonary oxygen uptake in the resting and exercise condition without metabolic processes. aim of this study was to show the influence of The changing gravity in G_z-axis on pulmonary oxygen $(V'O_2)$ uptake, carbon-dioxide $(V'CO_2)$ exhalation cardiac (Q'). and output

Methods: Analogous to PF, tests were performed on TT as a model and in a long-arm HC as a simulation applying a G_z -acceleration protocol. The arising G_{z} during aeronautical invariable and time dependent parabola cycles were transcribed for TT as 65° for the equivalent of earth gravitational force (P_1), 90° as pull up (hyper-G, P_2), -6° as μ -G (transition, P_3), 90° as pull down (hyper-G, P₄). For HC the G₇-profile was programmed: P₁ = 1.7, $P_2 = 2.1, P_3 = 1.2, and P_4 = 2.1.$ During PF G₇-forces occurred: $P_1 = 1.0, P_2 = 2.1, P_3 = 1.2, P_4 = 2.1$ $P_2 = 1.8$, $P_3 = \mu$ -G, and $P_4 = 1.8$. During recurring P_3 subjects performed within the 22 sec randomized relaxed rest (RR), or exerted exhalation (EE) maneuvers (jet pilot forced pressure ventilation), or continuous maximum muscle contraction (MC) of lower extremities and abdomen. Physiologic parameters V'O₂ and V'CO₂ were obtained by spirometry and analyzed breath by breath considering Beaver corrections. Heart rate (HR) was recorded by ECG and analyzed beat to beat. Blood pressure (BP) was measured with Portapres M2. SV was calculated from BP using the model flow algorithm. The product of HR and SV is the calculated Q'.

Results: Nine subjects having flight medical certificate and signed written inform consent (age: 31 ± 3 y, weight: 79 ± 7 kg, height: 181 ± 7 cm, BMI: $24 \pm 2 \text{ kg}^{+}\text{m}^{-2}$) were exposed 15 times to repetitively changing gravity in G_z-axis in the model TT, simulated in HC, and in reality during PF. The cycles with the same action (RR, EE, and MC) were averaged and analysed comparatively for each set up (TT, HC, and PF).

Conclusions: The increase in $V'O_2$ (corresponding $V'CO_2$) and Q' during P_3 of the resting condition is not related to muscular work. The earlier peak in $V'O_2$ during this phase cannot be explained by increasing Q'. It is assumed that blood is pooled in the post lung venous vessels in front of the left ventricle. If performed EE maneuver this effect is attenuated (intra-pulmonary pressure). After the EE phase, the peak in $V'O_2$ during P_4 reflects a high blood flow through the lungs and a refill from the periphery of the lung venous vessels. Considering the MC condition, the increase in Q' was pronounced and remained increased until the end of the following P_1 . $V'O_2$ increased with an initial overshoot and remained augmented for the following time up to 90 sec after these maneuvers. The results suggest that pulmonary gas exchange measurements might be used to estimate lung perfusion and/or pooling of blood in the venous system of the lung during changing gravity in Gz-axis.

Literature: Response 2114-8. JM. Seylaz J. +Gz 1985; 76(5): Clère Kerauelen Melchior human cerebral 2. Shubrooks SJ Jr, Leverett SD Jr. Effect of the Valsalva +G Ζ acceleration. Appl Physiol. 1973; 34(4): 460-6. maneuver tolerance on to Hoffmann U, Dräger T, Steegmanns A, Koesterer T, Linnarsson D. Influence of combined exercise and gravity transients and apnea on hemodynamics. Europ J Appl Physiol. 2009; 106(4): 589–597 Beaver WL, Lamarra N, Wasserman K. Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol. 1981; 51(6): 1662-75. 4. Kakurin LI, Lobachik VI, Mikhailov VM, Senkevich YA. Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med. 1976; 47(10): 5. 1083-6.

¹ Institute for Physiology and Anatomy Cologne, Germany

² Physiology Diagnostics and Research Königsbrück, Germany

Presented at Aerospace Medical Association 88th Annual Scientific Meeting April 29th – 04th May, 2017 Denver, CO, USA

I have no financial relationships to disclose I will not discuss off-label use and/or investigational use in my presentation

andreas4werner@bundeswehr.org